Winter School at UACEG

Topic: Water Management Optimization Problems

Task for Students \# 2:

Transportation Problem - Application in Water Resources Management.

Explanations and Example

Tutor: Assoc. Prof. Petar Filkov

The European Commission support for the production of this document does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

University of Nis

Strengthening of master curricula in water resources management for the Western Balkans HEls and stakeholders

TASK \# 2
 OPTIMIZATION PROBLEMS.

 TRANSPORTATION PROBLEM - APPLICATION IN WATER

 TRANSPORTATION PROBLEM - APPLICATION IN WATER RESOURCES MANAGEMENT

1. Initial data

A simplified scheme of the water management system (WMS) is presented on Fig. 1.
According to initial data provided in Terms of Reference (TOR) the WMS consists of 3 water sources - a pumping station (PS 1) abstracting water from a reservoir, a pumping station (PS 2) abstracting surface water and a pumping station (PS 3) abstracting groundwater. These water sources are named A_{1}, A_{2} и A_{3}. The water sources have supply capacities of the following volumes of water per day (in thousands m^{3}): $W_{1}^{A}=40, W_{2}^{A}=40$ и $W_{3}^{A}=20$.

Fig. 1. Schematic View of the Water Sources, Delivery Networks and Water Users
The water users are 3 Irrigation Fields (IFs), together with their Regulating Reservoirs (RRs), which are located at a command elevation above the IFs. Generally, the water users are named B_{1}, B_{2} и B_{3}.

The water demand per day of these three water users are as follows: $W_{1}^{B}=30, W_{2}^{B}=60, W_{3}^{B}=30$.
Each water source A_{i} can supply water to each water user B_{j}.
The costs $Z_{i, j}$ for water delivery from each water source A_{i} to each water user B_{j} are provided in Annex 2 of TOR. The costs $Z_{i, j}$ are not constants, nor in linear relation to the volumes of water supplied from water source A_{i} to water user B_{j}. The functions "Costs $Z_{i, j}$ " versus "Supplied volumes $V_{i, j}$ " are shown as graphs on Fig. 2.

Fig. 2. Water Supply Cost Functions
The minimum cost for supplying water from 3 water sources to 3 water users has to be found, as well as the volumes $V_{i, j}$ supplied from each water source A_{i} to each water user B_{j} have to be determined.

2. Problem solution

2.1. Type of Transportation problem

The type of transportation problem is determined by checking if the total supply (total volumes available) is equal to the total demand:

$$
\sum_{i} W_{i}^{A} \geq \sum_{j} W_{j}^{B}
$$

Check:
Total supply (available volumes in water sources A_{i}): $\sum_{i} W_{i}^{A}=40+40+20=100 \mathrm{~m}^{3} .10^{3}$.
Total demand (needed volumes by water users B_{j}): $\sum_{j} W_{j}^{B}=30+60+30=120 \mathrm{~m}^{3} \cdot 10^{3}$.
It is evident that $\sum_{i} W_{i}^{A}<\sum_{j} W_{j}^{B}$, thus the problem is not balanced.
The disbalance is: $\sum_{i} W_{i}^{A}-\sum_{j} W_{j}^{B}=100-120=-20 \mathrm{~m}^{3} .10^{3}$. (i.e. deficit is $20 \mathrm{~m}^{3} .10^{3}$.).
A virtual water source A_{4} is introduced (it is called dummy water source). The virtual capacity of the dummy water source is $W_{4}^{A}=20 \mathrm{~m}^{3} .10^{3}$, thus the problem becomes balanced.

2.2. Objective Function and Constraints

2.2.1. Objective Function

The Objective Function (OF) is a total cost for supplying water from all water sources A_{i} to all water users B_{j}. The classic form of the OF is:

$$
\begin{align*}
Z= & V_{11} C_{11}+V_{12} C_{12}+V_{13} C_{13}+V_{21} C_{21}+V_{22} C_{22}+V_{23} C_{23}+V_{31} C_{31}+V_{32} C_{32}+V_{33} C_{33}+ \\
& +V_{41} C_{41}+V_{42} C_{42}+V_{43} C_{43}, € . \tag{1}
\end{align*}
$$

or shortly: $Z=\sum_{i} \sum_{j} V_{i j} C_{i j}$, as $i=1 \div 4 ; j=1 \div 3$,
where $V_{i, j}$ are the volumes of eater supplied from water source A_{i} to all water user B_{j};
$C_{i, j}$ - the unit costs for transporting (supplying) water from water source A_{i} to all water user B_{j}.
Since the unit costs $C_{i, j}$ for supplying water from water source A_{i} to all water user B_{j} are not constant, but variable in function of the volumes supplied, as it is provided by $\underline{T O R}$, a new form of OF is defined:

$$
\begin{equation*}
Z=\sum_{i} \sum_{j} Z_{i j}, €, \tag{2}
\end{equation*}
$$

where $Z_{i j}=V_{i j} C_{i j}$ is the cost for supplying water from water source A_{i} to all water user B_{j}.

2.2.2. Constraints

a) Supply Constraints

These constraints take into account the capacity of water sources.

$$
\left\lvert\, \begin{align*}
& V_{11}+V_{12}+V_{13}=W_{1}^{A} \tag{3}\\
& V_{21}+V_{22}+V_{23}=W_{2}^{A} \\
& V_{31}+V_{32}+V_{33}=W_{3}^{A} \\
& V_{41}+V_{42}+V_{43}=W_{4}^{A}
\end{align*}\right.
$$

b) Demand Constraints

These constraints take into account the demand of water users.

$$
\left\lvert\, \begin{align*}
& V_{11}+V_{21}+V_{31}+V_{41}=W_{1}^{B} \tag{4}\\
& V_{12}+V_{22}+V_{32}+V_{42}=W_{2}^{B} \\
& V_{13}+V_{23}+V_{33}+V_{43}=W_{3}^{B}
\end{align*}\right.
$$

2.3. Creation of Solution Model in MS Excel

2.3.1. Cost functions

Explanations: The following text in blue and figures with Latin numbers (i, ii, iii, etc.) should not be written in the explanatory note. The text and figures are used to describe the procedures and to help solving the task.

The graphs in Annex 2 have to be replaced and presented as equations. Thus, the equations can be used in MS Excel to calculate the cost for a given volume of water supplied.

To find equation of each function $Z_{i, j}-V$ one should make readings for 3 or 4 points from the graphs on Fig. 2. A table is made in MS Excel (see Fig. i). It is convenient to read values $Z_{i, j}$ for the same values of the volume V.
COSTS READ FROM THE GRAPH

	Volumes of Water				
Cost	$\mathbf{0}$	$\mathbf{2 0}$	$\mathbf{4 0}$	$\mathbf{7 0}$	$\mathbf{1 0 0}$
$\mathbf{Z ~ 1 , \mathbf { 1 }}$	$\mathbf{0}$	$\mathbf{1 , 2 1}$	2,02	2,69	3,03
$\mathbf{Z ~ 1 , \mathbf { 2 }}$	0	1,63	2,8	3,82	4,31
$\mathbf{Z ~ 1 , 3}$	0	1,77	3,11	4,33	4,86
$\mathbf{Z ~ 2 , 1}$	0	2,65	3,89	4,78	5,23
$\mathbf{Z ~ 2 , 2}$	0	1,46	2,39	3	3,41
$\mathbf{Z ~ 2 , 3}$	0	1,95	2,89	3,6	3,89
$\mathbf{Z ~ 3 , 1}$	0	1,66	3,15	5	6,5
$\mathbf{Z ~ 3 , 2}$	0	1,88	3,49	5,48	7,21
$\mathbf{Z ~ 3 , 3}$	0	1,44	2,78	4,5	5,88
$\mathbf{Z ~ 4 , \mathbf { 1 }}$					
$\mathbf{Z ~ 4 , \mathbf { 2 }}$					
$\mathbf{Z ~ 4 , \mathbf { 3 }}$					

Fig. 1
Then, using the MS Excel option Insert \rightarrow Graph \rightarrow X Y Scatter graphs are inserted into the worksheet (see Fig. ii).

Fig. ii

The initial graph is not the desired one. The row and columns should be switched to obtain needed result (see Fig. iii).

Fig. iii

Then, by clicking on a given function with the right mouse button and selecting the option Add Trendline from the context menu, a trendline is inserted (Fig. iv).

Fig. iv
In the pane Format Trendline, a Polynomial is selected and an order 3 or 4 is set. Also, option Display Equation on chart is selected.
Thus, it is assumed to calculate the costs Z by the polynomial: $Z=a V+b V^{2}+c V^{3}+d V^{4}$ in which the variable V is the supplied volume V. It is evident that all functions cross the origin of coordinate system, thus a constant (free term) of the polynomial function is equal to zero and may not be written.
Then a new table, as shown on the right of the Fig. v is made. In that table all of the polynomial coefficients are written.

COSTS READ FROM THE GRAPH							Polynomial terms: $\mathrm{Z}=\mathbf{a} . \mathrm{V}+\mathrm{b} . \mathrm{V}^{2}+\mathrm{c} \cdot \mathrm{V}^{3}+\mathrm{d} . \mathrm{V}^{4}$			
	Volumes of Water									
Cost	0	20	40	70	100	Cost	a	b	c	d
Z 1,1	0	1,21	2,02	2,69	3,03	Z 1,1	0,0725	-0,0006	0,00000178	
Z 1,2	0	1,63	2,8	3,82	4,31	Z 1,2	0,0956	-0,0007	0,00000175	
Z 1,3	0	1,77	3,11	4,33	4,86	Z 1,3	0,0985	-0,0005	-0,000002	2E-08
Z 2,1	0	2,65	3,89	4,78	5,23	Z 2,1	0,1866	-0,0033	0,00003	-1E-07
Z 2,2	0	1,46	2,39	3	3,41	Z 2,2	0,0921	-0,001	0,0000042	
Z 2,3	0	1,95	2,89	3,6	3,89	Z 2,3	0,1206	-0,0014	0,000006	
Z 3,1	0	1,66	3,15	5	6,5	Z 3,1	0,0886	-0,0003	0,00000065	
Z 3,2	0	1,88	3,49	5,48	7,21	Z 3,2	0,1027	-0,0004	0,0000009	
Z 3,3	0	1,44	2,78	4,5	5,88	Z 3,3	0,0751	-0,0001	-0,0000008	
Z 4,1						Z 4,1	1	0	0	
Z 4,2						Z 4,2	1	0	0	
Z 4,3						Z 4,3	1	0	0	

Fig. v
A new table is made in order to check how good is the match between the function Z calculated by means of the obtained equations and the function Z on Fig. 2. (see Fig. vi - the rightmost table). If the it is needed a polynomial order is decreased to 3 and new values of polynomial coefficients are obtained. As it is seen from the tables in the right side of Fig. vi, the cost values read and the cost values calculated are pretty close, thus two functions match good enough.

		\checkmark	$\checkmark f_{x}=A E$	R14+AE\$1	$3^{\wedge} 2^{*}$ S $14+A E \$$	^3*\$T14+	AE\$	*4*\$											
	P	Q	R	S	T	U	V	W	x	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH
10																			
11										COSTS RE	FROM	THE GR			CALCULAT	COSTS	TRENDL	FUNCT	
12			Polynomial	z = a $\mathrm{C}+\mathrm{b}$	$\mathrm{V}^{2}+\mathrm{c} . \mathrm{V}^{3}+\mathrm{d} \cdot \mathrm{V}^{4}$						Volum	es of W				Volu	es of Wa		
13		Cost	a	b	c	d			Function	0	20	40	70	100	0	20	40	70	100
14		Z 1,1	0,0725	-0,0006	0,00000178				Z 1,1	0	1,21	2,02	2,69	3,03	0	1,224	2,054	2,746	3,030
15		Z 1,2	0,0956	-0,0007	0,00000175				Z 1,2	0	1,63	2,8	3,82	4,31	0	1,646	2,816	3,862	4,310
16		Z 1,3	0,0985	-0,0005	-0,000002	2E-08			Z 1,3	0	1,77	3,11	4,33	4,86	0	1,757	3,063	4,239	4,850
17		Z 2,1	0,1866	-0,0033	0,00003	-1E-07			Z 2,1	0	2,65	3,89	4,78	5,23	0	2,636	3,848	4,781	5,660
18		Z 2,2	0,0921	-0,001	0,0000042				Z 2,2	0	1,46	2,39	3	3,41	0	1,476	2,353	2,988	3,410
19		z 2,3	0,1206	-0,0014	0,000006				Z 2,3	0	1,95	2,89	3,6	3,89	0	1,900	2,968	3,640	4,060
20		Z 3,1	0,0886	-0,0003	0,00000065				Z 3,1	0	1,66	3,15	5	6,5	0	1,657	3,106	4,955	6,510
21		Z 3,2	0,1027	-0,0004	0,0000009				Z 3,2	0	1,88	3,49	5,48	7,21	0	1,901	3,526	5,538	7,170
22		Z 3,3	0,0751	-0,0001	-0,0000008				Z 3,3	0	1,44	2,78	4,5	5,88	0	1,456	2,793	4,493	5,710
23		Z 4,1	1	0	0				Z 4,1						0	20	40	70	100
24		Z4,2	1	0	0				Z 4,2						0	20	40	70	100
25		Z 4,3	1	0	0				Z 4,3						0	20	40	70	100

Fig. vi.

The Cost functions are obtained by means of MS Excel.
At first, for each Cost function $Z_{i, j}$ they are made 4 reading from graphs, shown on Fig. 2. Then chart is inserted in MS Excel using the data from readings. For each function $Z_{i, j}$ a trendline is added and the trendline equation is found. All the Cost functions are described as polynomes. Then a check is performed in order to verify the trendline equations. The results are presented on Fig. 3.
The Cost functions for the virtual water source $-Z_{41}, Z_{42}$ и Z_{43}, are presented as linear functions, which return very high costs - 15 to 20 times bigger, compared to the costs for delivery from real water sources to water users.

			$\checkmark f_{x}=A E$	R14+AE\$1	$3^{\wedge} 2^{*}$ S $14+A E \$$	*\$14+	AE\$	^4*\$U											
	P	Q	R	S	T	U	V	W	x	Y	z	AA	AB	AC	AD	AE	AF	AG	AH
10																			
11										COSTS RE	FROM	THE GR			CALCULAT	COSTS	TRENDL	FUNCT	
12			Polynomial	$\mathrm{z}=\mathrm{a} . \mathrm{V}+\mathrm{b}$	$\mathrm{V}^{2}+\mathrm{c} . \mathrm{V}^{3}+\mathrm{d} \cdot \mathrm{V}^{4}$						Volum	es of W				Volu	es of Wa		
13		Cost	a	b	c	d			Function	0	20	40	70	100	0	20	40	70	100
14		Z 1,1	0,0725	-0,0006	0,00000178				Z 1,1	0	1,21	2,02	2,69	3,03	0	1,224	2,054	2,746	3,030
15		Z 1,2	0,0956	-0,0007	0,00000175				Z 1,2	0	1,63	2,8	3,82	4,31	0	1,646	2,816	3,862	4,310
16		Z 1,3	0,0985	-0,0005	-0,000002	2E-08			Z 1,3	0	1,77	3,11	4,33	4,86	0	1,757	3,063	4,239	4,850
17		Z 2,1	0,1866	-0,0033	0,00003	-1E-07			Z 2,1	0	2,65	3,89	4,78	5,23	0	2,636	3,848	4,781	5,660
18		Z 2,2	0,0921	-0,001	0,0000042				Z 2,2	0	1,46	2,39	3	3,41	0	1,476	2,353	2,988	3,410
19		z 2,3	0,1206	-0,0014	0,000006				z 2,3	0	1,95	2,89	3,6	3,89	0	1,900	2,968	3,640	4,060
20		Z 3,1	0,0886	-0,0003	0,00000065				Z 3,1	0	1,66	3,15	5	6,5	0	1,657	3,106	4,955	6,510
21		Z 3,2	0,1027	-0,0004	0,0000009				Z 3,2	0	1,88	3,49	5,48	7,21	0	1,901	3,526	5,538	7,170
22		Z 3,3	0,0751	-0,0001	-0,0000008				Z 3,3	0	1,44	2,78	4,5	5,88	0	1,456	2,793	4,493	5,710
23		Z 4,1	1	0	0				Z 4,1						0	20	40	70	100
24		Z 4,2	1	0	0				Z 4,2						0	20	40	70	100
25		Z 4,3	1	0	0				Z 4,3						0	20	40	70	100

Fig. 3.

2.3.2. MS Excel model

Two matrices are made - the Matrix of volumes and Matrix of Costs (see Fig. 4).

	-	\checkmark : \times	$\times f_{x}$	$=\$ R \$ 14^{*} \mathrm{C} 4$	+\$S\$14*C4*	+\$T\$14*	4^3+\$U\$14*	
	A	B	C	D	E	F	G	+
1								
2		MATRIX O	OF VOLUMES					
3			B1	B2	B3	Sum	Available V	
4		A1	20	0	0	20	40	
5		A2	0	0	0	0	40	
6		A3	0	0	0	0	20	
7		A4	0	0	0	0	20	
8		Sum	20	0	0		120	
9		Needed V	30	60	30	120		
10								
11								
12		MATRIX O	F COSTS					
13			B1	B2	B3	Sum		
14		A1	**C4+\$S\$1	0	0	1,224		
15		A2	0	0	0	0,000		
16		A3	0	0	0	0,000		
17		A4	0	0	0	0,000		
18						1,224		
19		Sum	1,22424	0	0	1,224	Check	

Fig. 4.
The Matrix of volumes. In the rows of Matrix of volumes, the number of water sources are set, and in the columns - the number of water users. Thus, in each cell the volume from source A_{i} to user B_{j} will be written. In the column Sum, the sum of the supplied volumes from source A_{i} is calculated. In the column Available V (cells in yellow), the capacity W_{i}^{A} of each water source is entered (see Fig. 4 - left picture).
In the row Sum, the sum of the supplied volumes to water user source B_{j} is calculated. In the row Needed V (cells in yellow), the demand W_{j}^{B} of each water user is entered.
In the Matrix of costs, in each cell it is calculated the cost for supplying water from source A_{i} to user B_{j} in dependence of the volume supplied from source A_{i} to user B_{j} and the Cost function for that route. As it is seen from Fig. 4 - right picture, the value of the volume is taken from the Matrix of volumes and the polynomial coefficients - from the left table on Fig. 3.

The column Sum contains the sum of costs for supplying water from source A_{i} to all users B. The row Sum contains the sum of costs for supplying water from all sources A to user B_{j}. The value in the cell F18 contains the sum of the values above, and the value in the cell F19 contains the sum of the values from the left. Both sums in cells F18 and F19 have to be the same. The value of the cell F18 (and in cell F19) is the value of Objective Function.
An initial solution, so called basic feasible solution should be done for the volumes in the Matrix of volumes.
One feasible solution is shown on Fig. vii.

The basic feasible solution can be done using so-called Northwest Corner Method.

In this method we start from the top leftmost cell. In that cell we write as big as possible volume, according to capacity or the demand for the first water source and the first water user. Then, we move to adjacent cell - either right, or down, depending which one of the constraints (capacity or demand) is not fulfilled.

Thus, moving generally from Northwest corner to Southeast corner we allocate in each cell as big volume is possible.

Fig. vii
The task is solved by means of Excel Solver. This is a built-in add-on tool in MS Excel. If it is activated it can be found under the Data tab. If it is not activated, then go to File \rightarrow Options \rightarrow Add-ins. Select Solver Add-in \rightarrow Manage \rightarrow Solver \rightarrow OK. Then you can find it under Data tab, on the right side of the toolbar, in section Analyze.

Select cell F18 and then start Solver.

The dialog box appears (see Fig. viii).

Fig. viii

It is automatically suggested by the Solver that the OF is in marked cell. In this case it is cell F18. The formula in cell F18 calculates the value of the OF, as it is defined by equation (2).
We look for minimum value of the Objective Function, thus we select radio button Min.
In the box By Changing Variable Cells we point (select) the range of the volumes in the Matrix of volumes. For this example, this is the range from cell C 4 to cell E7. when we select the range, automatically the absolute addresses of cells appear.
In the box Subject to the Constraints we have to specify the constraints. They are described by the set of equations (3) and (4). It should be inserted, once at the time, each constraint. As it is seen from Fig. vii and Fig. viii (the first 3 constraints) the sum of the supplied volumes to each water user B_{j} should be equal to its demand - these represent constraints in equation (4). The same is valid for the water sources (the last 4 constraints) - the sum of the supplied volumes from each water source A_{i} should be equal to its capacity - these represent constraints in equation (3).
Since all the variables (i.e. volumes) should not be negative, we select the check box Make Unconstrained Variables NonNegative.
If it is not specified or some other method is suggested, we have to select from the drop-down menu Select a Solving Method the option GRG Nonlinear.
Then we click on the button Solve.
When a feasible solution is found the notification pops up. The solution is ready and we click on Keep Solver Solution.
CAUTION! It is advisable to try several Solver solutions, each one of them using different basic feasible solution. Sometimes the results preformed by Solver are not correct due to nonlinear relations.
On Fig. ix there is an example of one initial feasible solution, and a final solution, which is declared optimal by Solver. However, as it is seen from Fig. 5, this is actually NOT the optimal solution.

	A	B	C	D	E	F	G
1							
2	MATRIX OF VOLUMES						
3			B1	B2	B3	Sum	Available V
4		A1	30	10	0	40	40
5		A2	0	10	30	40	40
6		A3	0	20	0	20	20
7		A4	0	20	0	20	20
8		Sum	30	60	30		120
9		Needed V	30	60	30	120	
10							
11							
12		MATRIX OF COSTS					
13			B1	B2	B3	Sum	
14		A1	1,68306	0,88775	0	2,571	
15		A2	0	0,8252	2,52	3,345	
16		A3	0	1,9012	0	1,901	
17		A4	0	20	0	20,000	
18						27,817	
19		Sum	1,68306	23,6142	2,52	27,817	Check
3							

Fig. ix

2.3.3. MS Excel Solver Solution

The solution of the task is obtained by means of the Solver add-in tool of MS Excel.
The results are presented in Fig. 5.

Fig. 5. Problem solution by means of MS Excel Solver
The real minimum of the Objective function is obtained by reducing the costs for delivery from dummy water source to water users. In this case the costs are 20 thousand Euro.

The real costs for water delivery are:
Cost $=26,379-20,000=6,379$ thousand Euro or $6379 €$.
It can be seen from the table on Fig. 5, that the demand of the water users B_{2} and B_{3} is not satisfied. It was evident that the system has a deficit of $20000 \mathrm{~m}^{3}$ and the most economical solution is to have deficits of $10000 \mathrm{~m}^{3}$ for each of water users B_{2} and B_{3}. This may not be satisfying solution for user B_{3}, because the deficit represents 33% of its demand.

